
SpiderByte White Paper:
A Better Peer-to-Peer Electronic Cash System

Simone Lussardi
spider@spiderbye.co

tysimon@spiderbyte.co
help@litecoinplus.co

media@litecoinplus.co
https://spiderbyte.co/

(git: https://github.com/Crypto-Currency/SpiderByte)

[rev 5.00 – 2023-02-01 by tysimon]
[re-brand from Litecoin Plus / LCP]

Abstract. A purely peer-to-peer version of electronic cash to allow online payments to be
sent directly from one party to another without going through a financial institution, while
holding a more or less stable value. Basic project is derived from Bitcoin (BTC) software
and Litecoin (LTC), has the same base structure and functionality, but it is an improvement
under several aspects. First and foremost, SpiderByte team believes that PoW (Proof-of-
Work, and related massive carbon print and power consumption) is destined to be left
behind. It is no doubt necessary to maintain a fast moving network growing. The following
charts clarify the evolution of SpiderByte (former LitecoinPlus):

SCRYPT

bitcoin-core software
original development

SHA256

Litecoin-core
SCRYPT

LitecoinPlus
(PoS only)

2014
LitecoinPlus

(PoS/PoW hybrid)
August 2017

SpiderByte
2022

https://github.com/Crypto-Currency/SpiderByte
https://spiderbyte.co/
mailto:media@litecoinplus.co
mailto:help@litecoinplus.co
mailto:tysimon@spiderbyte.co
mailto:spider@spiderbye.co

To put in graphical terms the fundamental differences between each of the above systems,
here is a simple chart:

There is no need to re-invent the wheel and write down the specific of Bitcoin or Litecoin,
since about everyone knows about those. If you are interested in the mathematics behind
Bitcoin, block generation etc. (which applies fully to SpiderByte network as well), please
refer to the original white paper of Satoshi Nakamoto: https://bitcoin.org/bitcoin.pdf. This
white paper instead is about how we achieved the target mentioned above and how we
plan to sustain it trough many years to come.

1. Introduction
SpiderByte has not started via an ICO (Initial Coin Offering). It was originally written as
Proof of Stake coin exercise. “Proof of stake (PoS) is a type of algorithm by which a
cryptocurrency blockchain network aims to achieve distributed consensus. In PoS-based
cryptocurrencies, the creator of the next block is chosen via various combinations of
random selection and wealth or age (i.e., the stake). In contrast, the algorithm of proof-
of-work-based cryptocurrencies such as Bitcoin uses mining; that is, the solving of
computationally intensive puzzles to validate transactions and create new blocks” (ref

https://en.wikipedia.org/wiki/Proof-of-stake). In contrast to the better known PoW, the non-
computational, consensus nature of the algorithm make sure that power consumption is not
an issue. PoS, when applied properly, can be run on any type of hardware, even very old
computers just running the SpiderByte wallet software can generate enough blocks to
sustain the network.

The fundamental issue of the first release of SpiderByte in 2014 was that it was a pure PoS
coin, and as such an experiment. In order to sustain the network, a stable block generation
is required (see later), which lead to the original SpiderByte network not able to sustain
itself.

In the next page, we put some generic details on the specifications of SpiderByte.

https://en.wikipedia.org/wiki/Proof-of-stake
https://bitcoin.org/bitcoin.pdf

GENERAL SPECIFICATIONS
Name: SpiderByte
Acronym: SPB
Encryption: Scrypt
Block generation: Proof of Stake/Proof of Work hybrid
Transaction time: 30 seconds
Max supply: 4,000,000 coins
RPC Port: 44350
P2P Port: 44351

Some resources for preliminary overview:
Main website: https://spiderbyte.co
Web wallet: https://wallet.spiderbyte.co
Stable git: https://github.com/Crypto-Currency/SpiderByte
Development/testing git: https://github.com/typhoonsimon/LitecoinPlus
Bitcoin Talk: https://bitcointalk.org/index.php?topic=2160325.0
Cryptocurrency Talk: https://cryptocurrencytalk.com/topic/87530-ann-litecoinplus-wallet-update-pow-added/
Twitter: http://twitter.com/Media_SPB
Discord community: https://discord.gg/UqXEmd5

Proof of Work specifications
Start reward at 2 and reduce by .25 every 200,000 blocks, for a duration of roughly
9,6 years (1 block every 30 seconds is the global target), until reward reaches 0.5
SPB, then it will stay at 0.5 SPB/block by default.

NOTE: From the start of PALADIN, that is planned to commence in early March 2020,
the Proof of Work reward will be gradually reduced, and possibly fade out if the
results of the experiment are good.

Proof of Stake specifications
Interest rate: 15% annually
Minimum coin age: 6 hours
Maximum age: 30 days

NOTE: From the start of PALADIN, the PoS reward may be dynamically increased
from time, to time to stimulate more nodes to participate.

https://discord.gg/UqXEmd5
http://twitter.com/Media_SPB
https://cryptocurrencytalk.com/topic/87530-ann-litecoinplus-wallet-update-pow-added/
https://bitcointalk.org/index.php?topic=2160325.0
https://github.com/typhoonsimon/LitecoinPlus
https://github.com/Crypto-Currency/SpiderByte
https://wallet.spiderbyte.co/
https://spiderbyte.co/

Compiling
Tested versions: 3.3.2.9~5.0.0.1

(* only LTS versions, fully updated systems)
(** all versions are fresh installs, other combination of libraries may not work)

OS Install sequence (depen.) Server QT
Ubuntu 12.04 32/64 sudo apt-add-repository ppa:bitcoin/bitcoin

sudo apt-get update
sudo apt-get install libdb4.8-dev libdb4.8++-dev
> broken (precise support removed from bitcoin/bitcoin ppa)
> can use another version of Berkeley, but this will broken
compatibility, so is strongly not recommended

Obsolete Obsolete

Ubuntu 14.04 32 sudo apt-get install build-essential
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install libdb4.8-dev
sudo apt-get install libdb4.8++-dev
sudo apt-get install libboost-all-dev
sudo apt-get install git
sudo apt-get install libssl-dev
sudo apt-get install libqt4-dev
git clone https://github.com/Crypto-Currency/SpiderByte.git
cd SpiderByte
:::QT
qmake USE_UPNP=-
make
:::d
make clean
cd src/
make -f makefile.unix USE_UPNP=-
strip ./spiderbyted

Fully tested Fully tested

Ubuntu 14.04 64 [exactly same as 14.04 32] Fully tested Fully tested

Ubuntu 16.04 32 [exactly same as 14.04 32] Fully tested Fully tested

Ubuntu 16.04 64 [exactly same as 14.04 32] Deep tested Deep tested

Ubuntu 18.04 64 [exactly same as 14.04 32]
must install Gnome Extension “KStatusNotifierItem/AppIndicator
Support by 3v1n0” to enable tray icon support

Deep tested Deep tested

Debian (all versions) [same as Ubuntu, but cannot use libdb4.8, unless one compiles
it by him/herself] Fully tested Fully tested

Fedora 29~31 [procedure coming up, everything working so far, including
migrating data from Ubuntu to Fedora] Fully tested Fully tested

Windows XP [just run the setup software] Fully tested Fully tested

Windows 10 [just run the setup software] Fully tested Fully tested

“Fully tested” sequence (qt means graphic version, d means server version):

1. Start the software (-qt or d) completely fresh, creates all the files, start syncing properly. After a while shutdown. Start again,
can start and continue where it left off.

2. Replace the folder with existing data folder (for respective bits), start the software, make sure it can run properly.
3. Staking on -qt version
4. Transferring coins from/to other wallets
5. PoW mining on -qt and d version
6. Alternating between -qt and d versions
7. Partially import a bootstrap file, then continue via the network
8. Easily maintaining in sync once fully synced (no stuttering)
9. Long time stability (no freezes, no abrupt terminations)

“Deep tested” sequence:

1. All of the above sequence , plus the following items:
1. Import completely a bootstrap file successfully.
2. PoS mining on -qt version
3. PoW mining on -qt and d version

2. Bitcoin: areas of improvement
Bitcoin has forever changed the world view on how “value” can be exchanged, opening an
entire new area into the crypto-currency world. As the first of anything, great innovation
was brought to us by very fact of the market capitalization it achieved today.

Having said that, Bitcoin has a few points that prevent it from becoming widespread as a
quick payment method:

• Confirmations take a long time: on average, payment confirmation may take up to 1
hour to get trough. This has made Bitcoin to be essentially used as a trading
commodity only instead of allowing online payments.

• Transfers are expensive: given the popularity and price increase, transaction fees
have become particularly expensive for Bitcoin.

• Energy intensive: getting the Bitcoin network going and the necessary block
generation is an expensive business.

SpiderByte has improved on all the above points, with careful planning of the revised
release in August 2017.

3. Hybrid concept
As the original failure has shown, a pure PoS network is not able to sustain itself, especially
at the beginning. Since there was no ICO and no initial coins (except for those generated in
the initial stages of the tests), it was impossible to get the amount necessary to get the net
going. For this reason, PoW was reintroduced, with a gradual “phase out” scheme, as
below:

• Original tests: reward of 2.00 SPB per block, plus transaction fees
• Block # < 2,000,000: reward of 1.75 SPB per block, plus transaction fees
• 2,000,000 <= Block # < 2,200,000: reward of 1.50 SPB per block, plus transaction fees
• 2,200,000 <= Block # < 2,400.000: reward of 1.25 SPB per block, plus transaction fees
• 2,400,000 <= Block # < 2,400.000: reward of 1.00 SPB per block, plus transaction fees
• 2,600,000 <= Block # < 2,400.000: reward of 0.75 SPB per block, plus transaction fees
• 2,800,000 <= Block #: reward of 0.50 SPB per block, plus transaction fees

This reward, combined with a block generation target of 30s, will be used to calculate the
following two parameters:

• PoS difficulty
• PoW difficulty

The aim of these two parameters is to balance out new block generation, and achieve the
target specified of 30s. Blocks are publicly readable at: http://explorer.spiderbyte.co/ or
http://explorer2.spiderbyte.co/
At the top of the block explorer, real time PoW and PoS difficulty, current supply and
Bitcoin price are available.

http://explorer.spiderbyte.co/
http://explorer2.spiderbyte.co/

4. PALADIN Implementation
PALADIN is a self-learning advanced system, that has the following scheme:

As of version 5.0.0.1 or newer of the wallet, PALADIN system has been introduced. PALADIN
is a 51% attack mitigation set of rules and functions that can dynamically change the
behavior of the entire network, remotely and with consensus. This approach is quite
innovative and it maintains fully the decentralized structure and nature of SPB, in the true
spirit of the original white-paper. Actually eliminating the 51% problem in a true
decentralized scheme is not fully possible as of today, unless central control is introduced,
and after much discussion and deliberation, the development team has come to the
conclusion that centralizing the control with a server shouldn’t be done.

But we want to assure all of SPB investors that we have a strong plan for mitigation, should
a problem ever arise. Our concept is based on simple assumption:

1. PoS mining is intrinsically a lot less likely to have an attack mounted, due to the
nature of how blocks are generated and checked

2. SPB is already an hybrid crypto-currency, and we feel that adding another mining
method to it would not be a good option

We come to the conclusion that the attack may only come from PoW mining, and for this
reason, we have adopted several mechanism since version 5.0.0.1.

From new file rules.h:

// the PALADIN system class definition
class CRules
{
public:

// saving stuff for the rules/alert (encrypted only)
 std::vector<unsigned char> vchMsg;
 std::vector<unsigned char> vchSig;

// variables
int alertId; // link to alert ID
int nVersion; // version of rule packet
int nID; // rule ID
int nMinVer; // lowest version inclusive
int nMaxVer; // highest version inclusive
int fromHeight; // starting from block height
int toHeight; // ending at block height
int ruleType; // just an enum of rule types
int ruleValue; // the value for this rule

 enum ruleTypes
 {

RULE_POW_ON_OFF = 1, // PoW ON/OFF flag
RULE_CLOCK_DRIFT = 2, // adjust nMaxClockDrift value dynamically
RULE_POS_PERCENT = 3, // adjust PoS % reward
RULE_POW_REWARD = 4, // adjust PoW absolute reward
RULE_BLOCK_TARGET = 5, // adjust the block target, in s
RULE_DISABLE_OLD_CLIENTS = 6, // only accept clients >= 5.0.0.1
RULE_SUSPEND_SENDING = 7, // refuse to send coins, globally
RULE_POS_ON_OFF = 8, // PoS ON/OFF flag

 };

1. RULE_POW_ON_OFF: with this rule, we can control whether the network, within a
specific range of blocks, accepts PoW or not altogether. If the rule is raised, PoW
blocks are rejected by the network, and the node is soon disconnected by the
clients, as the default behavior for invalid PoW found.

2. RULE_CLOCK_DRIFT: an attack is often carried by advancing the nTime of blocks
rapidly mined, so that other nodes are too busy re-organizing the chain, and creating
mini forks. Is not necessarily a dangerous thing, just annoying, cause the users would
then need to re-sync the blockchain. By adjusting this value dynamically, we can fine
tune it if this is detected by our algorithm.

3. RULE_POS_PERCENT: possibility to adjust the % of PoS remotely. Not really directly
used against the attack, but combined with PoW off under certain conditions, could
be used to achieve a drastic increase in PoS mining to sustain the network.

4. RULE_POW_REWARD: possibility to adjust the absolute reward of PoW mining.
Again, not directly linked, but since we have added PoS dynamic percent, why not
adding also PoW absolute reward. It would probably never be used, but is there.

5. RULE_BLOCK_TARGET: dynamic block target value (at the moment is 30s). Could be
used also to mitigate an attack situation by diluting slightly the block generation.

6. RULE_DISABLE_OLD_CLIENTS: essentially is the “PALADIN ACTIVATED” flag, and does
a few things internally in the code, among which, enabling PALADIN.

7. RULE_SUSPEND_SENDING: when this rule/flag is activated, all legitimate wallets
will be unable to send coins out. This function is essentially the equivalent of
suspending withdraws for Exchanges or mining pools or web wallets when a serious
problem is detected, and precautionary, stop them. Receiving cannot be stopped,
but an exchange could check the status of this rule dynamically with the new RPC
command “testrule <height> <rule-type>”, in which <height> is the block height to
test, and <rule-type> the rule type required to test, in this case 7. Exchanges could
then take immediate actions in case they are receiving coins from some nodes,
because legitimate nodes shouldn’t be sending when the rule is on, meaning very
likely that the system is being targeted by malicious transactions.

8. RULE_POS_ON_OFF: with this rule, same as above, we can lock the acceptance of
PoS blocks. Along with PoW flag above, with this rule we can effectively pause the
blockchain, without adverse effects on connectivity. Of course, as above, these
commands are expected to be used in emergency.

4.1 – How are rules activated ?

We have profoundly improved the alert management sub-system, already present with
modules alert.cpp/alert.h. We have also vastly improved the RPC part of the “sendalert”
method. Rules are activated by a new RPC method, “sendrule”, that has the following
parameters:

• <privatekey>: is hex string of alert master private key. Only the main devs have this
key.

• <encoded-rule>: the encoded string that defines the rule.

Because a new RPC method has been created, it is not necessary to use “sendalert” to
encode rules. Also, this is prevented, as rule are specially encoded alert with priority = 999,
set in the code.

4.2 – How are rules are spread ?

Once activated, these specially packed alerts have a flag nPermanent set, and they can
never be canceled. Even old nodes are able to decode these packets, and they will relay
them, but they will not accept them because the protocol version match has been
increased.

They will live permanently on the net. As soon as a rule is received, it is stored in memory
and the equivalent encoded packet (class: Calert) it is stored to the disk, in a sequential
format, in a file called rules.dat.

In the unlikely event that all the nodes are down simultaneously, upon restart the first node
will spread its saved rules to the network. A node having fresher rules will do the same, and
the combination will result in a unique, updated set of rules. Because rules and blockchain
goes together, if a block is ever in the blockchain, it means it was accepted by that very
node that has the rule, so at least one copy of the freshest rule will always be present in at
least one node.

Of course, the Block Explorer, Website and Web-Wallet nodes, even though they are not
super-nodes or anything as such, will always have the latest set of rules just because their
uptime is guaranteed by the devs.

4.3 – If someone corrupt the rules.dat file ?

Because we save the encrypted packet that originated the alert, and decryption is done
every time the file is read again, it is extremely unlikely to happen. It has the same
chances of discovering the private key, but at that point corrupting the file is no more
necessary, as the malicious user would spread messages across the network.

For that purpose, there is a built-in safety, that allow the devs to disable entirely the
acceptance of new alerts. It is a specially encoded alert that will effectively lock down the
system, telling the users to upgrade:

4.4 – Upgraded RPC interface

The RPC interface has been enriched by the following commands:

• sendrule: transmit a rule to the newtork.
◦ <privatekey>: is hex string of alert master private key. Only the main devs have

this key.
◦ <encoded-rule>: the encoded string that defines the rule.

• listrules: lists all rules that are accepted and stored in memory
• testrule:

◦ <height>: the block height to test (one can go in the past and future)
◦ <rule-type>: the rule type # required, according to the ENUM structure above

• listalerts: list all active alerts in memory.

 // alert.nID=max is reserved for if the alert key is
 // compromised. It must have a pre-defined message,
 // must never expire, must apply to all versions,
 // and must cancel all previous
 // alerts or it will be ignored (so an attacker can't
 // send an "everything is OK, don't panic" version that
 // cannot be overridden):
 int maxInt = std::numeric_limits<int>::max();
 if (nID == maxInt)
 {
 if (!(
 nExpiration == maxInt &&
 nCancel == (maxInt-1) &&
 nMinVer == 0 &&
 nMaxVer == maxInt &&
 setSubVer.empty() &&
 nPriority == maxInt &&
 strStatusBar == "URGENT: Alert key compromised, upgrade required"
))
 return false;
 }

4.5 – New improved alert system

A new improved alert system has been released alongside the rules, so that wallet users can
receive important information at any time, for QT users in a specific newly designed
“Event” page. The page looks like below:

The categorization is done in the following way (alert.h and alert.cpp):

The type itself is pretty much self explaining. The only difference is that only SuperCritical
category alerts appear in the status bar, all the other will appear only in the new view or in
the “listalerts” RPC method.

SuperCritical category has a special case also: priority 1000. It is possible to send a
SuperCritical alert that will not appear in the status bar.

As per > 1000 (>= 1001), not only the status bar will show the message, but also the wallet
will spontaneously enter SAFE MODE, not allowing a lot of functions to happen. Obviously
this alert/rule would be used only in severe cases that may compromise the safety of our
users.

/** An alert is a combination of a serialized CUnsignedAlert and a signature. */
class CAlert : public CUnsignedAlert
{

…

static bool isInfo(int priority);
static bool isWarning(int priority);
static bool isCritical(int priority);
static bool isSuperCritical(int priority);
static bool isRule(int priority);

};

…

bool CAlert::isInfo(int priority)
{

return (priority <= 300);
}

bool CAlert::isWarning(int priority)
{

return (priority <= 600);
}

bool CAlert::isCritical(int priority)
{

return ((priority > 600) && (priority < 999));
}

bool CAlert::isSuperCritical(int priority)
{

return (priority >= 1000);
}

bool CAlert::isRule(int priority)
{

return (priority == 999);
}

5. Mining in details
Because SpiderByte has a hybrid bloc generation, mining takes place in two separate ways:

1. PoS Mining
2. PoW Mining

Regarding PoS Mining, it can be done by anyone on any type of hardware. It is
recommended to have a stable Internet connection. The way of block generation is as
following:

1. The wallet confirmed balance must be >= 0
2. If the wallet is encrypted, upon start it needs to be unlocked for staking (the icon

indicating the staking status will report about this, and the wallet can be safely
unlocked by going to menu Wallet Unlock To Stake…→).

3. Unlocking to stake is safe, the wallet will still need to be unlocked if any send
transaction is required.

4. The algorithm will then mature coins for staking.
5. When the wallet is actively staking, the staking icon will turn green.
6. When a stake is generated, the following will happen:

1. The transaction will appear in Overview and Transaction pages as unconfirmed
2. The block that staked is divided into two, and one part is put into stake status

(not spendable)
3. When it starts to get confirmations, by hovering the mouse on the transaction,

you can see the number of confirmation received
4. When it received 3 confirmations, the block reward is confirmed but not

spendable yet.
5. When it matures 50 or more confirmations, the related reward become spendable

and the stake amount is released, so it can mature again.

This is the calculation code for the PoS Mining reward:

int64 GetProofOfStakeReward(int64 nCoinAge, unsigned int nBits, unsigned int nTime, int nHeight)
{
 int64 nRewardCoinYear;
 if(nHeight < STAKE_FIX_BLOCK)
 {
 nRewardCoinYear = MAX_MINT_PROOF_OF_STAKE;
 }
 else
 {
 nRewardCoinYear = MAX_MINT_PROOF_OF_STAKE2;
 }
 int64 nSubsidy = nCoinAge * nRewardCoinYear / 365;

if (fDebug && GetBoolArg("-printcreation"))
 printf("GetProofOfStakeReward(): create=%s nCoinAge=%"PRI64d" nBits=%d\n",

FormatMoney(nSubsidy).c_str(), nCoinAge, nBits);

 return nSubsidy;
}

Regarding PoW Mining, any equipment that can handle SCRYPT algorithm mining (cpuminer,
cgiminer or ASIC miners such as AntMiner L3+, InnoSilicon A4+ etc.) can be used for
SpiderByte mining. As difficult increases, CPU or GPU mining is not profitable using anything
else than ASIC miners. The Principle is as follows:

1. With given difficulty (block target = 30s), ASIC miners will generate shares
2. When a block is found, the block is submitted to the network via RPC
3. If accepted, the block will appear in the wallet as unconfirmed
4. Once 3 confirmations are received, the block is marked as confirmed, and the

reward as immature, going to the immature balance, thus not spendable.
5. After 50 or more blocks, the amount becomes mature and thus spendable.

Here below is the code calculating the PoW reward:

For all mining, expect some orphans to happen occasionally, especially for PoS mining, since
not all the blocks will be able to make it into the network, especially if they are generated
very close to each other (within a few seconds).

int64 GetProofOfWorkReward(int nHeight, int64 nFees, uint256 prevHash)
{
 int64 nSubsidy = 0 * COIN;

 if(nHeight == 1)
 {
 nSubsidy = 221400 * COIN;
 return nSubsidy + nFees;
 }

 if(nHeight > POW_RESTART_BLOCK)
 {
 nSubsidy= 2 * COIN;
 if(nHeight > POW_RESTART_BLOCK+200000)
 {
 nSubsidy = 1.75 * COIN;
 }
 if(nHeight > 2000000)
 {
 nSubsidy = 1.5 * COIN;
 }
 if(nHeight > 2200000)
 {
 nSubsidy = 1.25 * COIN;
 }
 if(nHeight > 2400000)
 {
 nSubsidy = 1 * COIN;
 }
 if(nHeight > 2600000)
 {
 nSubsidy = .75 * COIN;
 }
 if(nHeight > 2800000)
 {
 nSubsidy = .5 * COIN;
 }
 }
 return nSubsidy + nFees;
}

6. Coin control and Dusting
Because of the nature of PoS Mining, and block split, it’s just a consequence that the
number of blocks that build up the wallet balance will exponentially increase over time.
This problem may become an issue for the user for two reasons:

1. When attempting to send a big amount, if the balance is built up by many tiny
blocks, the sending function may fail even though the balance is enough.

2. The smallest fraction of coin is 8 decimals (0.00000001, for instance). When the
block become so small that the related stake reward is less than that, the wallet will
not stake anymore.

To resolve the above issue, the user has two options:

1. Using the Advanced Coin Control features (not recommended for normal users), the
user can recombine his/her own coins into single larger block, so they will stake
again.

2. Using the automatic Dusting function the internal algorithm will just optimize the
blocks so that the wallet can continue to fairly stake and sustain the network, while
not causing problem to the user. In order to dust:
1. Select a destination address (only own addresses can be chosen)
2. Press the “Dust now” button

In either cases, it may appear that after dusting, the wallet stake “less than before”. As
per frequency this is true, but the amount at the end of long period is exactly the same, if
not more.

Here below is a sample page of the Dusting function, simply press Dust now button:

7. Dusting over the server version
Given the proven stability of the Dusting function, as of version v5.1.0.1 two more RPC
methods have been added to the wallet, as following.

listcoins [totalcount=true]: shows the total number of fragments in the own wallet. If no
parameters or true is given, it shows the total count, otherwise it gives info of each coin
block:

true: ￼

false:

The coin amount is sorted by value (smallest to highest).

dustwallet <address> [blocks=2000]: execute the dusting cycle. This function can be
called from remote RPC, and effectively be called to routinely dust the wallet. The
<address> is mandatory parameter, to specify which own address it should be dusted to.
Beware that if you set an external address, it will dust to another wallet ! The second
parameter is the target. If is omitted, it is assumed to be 2000 blocks. The function returns
some value on how it compacted the wallet:

{
"block_count" : 59
}

[
{
"map_index" : "00000000003284000xxxxxxxxxxxxxxxxxa7edcdd10ef439019807347e35a59bd0ac031024524dcc6",
"amount" : "32840000"
},
{
"map_index" : "0000000000328475341a2bcf851a8d5a263a7edcdd10ef439019807347e35xxxxxxxxxxxxxxxxxxxa",
"amount" : "32847534"
},
]

[
{
"selected_coins" : 9,
"selection_sum" : "497457951",
"txid" : "3a9729f8e82xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx625edc4c61e56e9032"
}
]

8. Maximum supply
One of the target being the stable value, the maximum supply of coins is limited to
4,000,000 coins. Once that amount is reached, the software will not generate any more
reward. The reward for generation of blocks will come exclusively from transaction fee. By
then (we estimated roughly 10 years) the amount of transaction will be enough and the
value would have risen to an amount that will sustain the network.

9. PoS and staking
In order to get the PoS going, the wallet need to have coins in it. A wallet with zero coins
does not stake, thus it doesn’t generate any blocks nor rewards. Once a positive balance is
in, coins will need to “mature” in order to start generating rewards. It is all part of the
internal algorithm to decide what blocks/coins mature and stake. The guaranteed annual
return for staking is about 15%.

10. Reaching all users
SpiderByte has considered carefully all kind of users, from the IT expert to the non-expert.
For this reason, a comprehensive structure of wallets have been devised, as following:

• Software wallet: the software wallet is the only one capable of generating blocks, in
combination with mining equipment or stand-alone. Several versions are available:
◦ Windows version
◦ Mac OS version
◦ Linux versions

▪ QT version (spiderbyte-qt, intended for Linux graphical interface users)
▪ d version (spiderbyted, intended for mining professionals and exchanges)

• Web wallet: easily accessible via web, it is already active and running at
https://wallet.spiderbyte.co. This makes it accessible to a large audience.

• Android wallet: even more easy than the web wallet, it’s available on Google Play at
the following page: https://play.google.com/store/apps/details?
id=com.litecoinplus.androidwallet

While all software flavors are basically the same, their behavior slightly differs. For
example, when installing the daemon “d” version for exchanges or mining portals, the
staking functionality needs to be disabled, otherwise funds cannot be transferred (see “PoS
and staking”). In the next page, there is a chart displaying how the single-tier network of
SpiderByte works with the respective type of wallets.

Staking is possible an all wallets. For the Web and Android Wallets, current percent is set to
10% and paid weekly in the user wallet. Minimum deposit has to be 100 SPB, and 5 days age
at least.
Relationship between the single-tier cloud and the user experience

https://wallet.spiderbyte.co/
https://play.google.com/store/apps/details?id=com.litecoinplus.androidwallet
https://play.google.com/store/apps/details?id=com.litecoinplus.androidwallet

LitecoinPlus
(single-tier cloud)

Wallet software

Android Wallet

Web Wallet

The advantages of the above solutions are obvious, and all aimed at simplifying the user
experience. For those more advanced users who prefer to own their coins into their
devices, the traditional wallet software is always available.

11. Software architecture
With its latest official release version 3.3.2.12, the wallet control has established the
following principles and philosophy for its architecture and development:

1. Database engine Berkeley DB (currently 4.8): contrary to the majority of other
wallets, even popular ones like Bitcoin and Litecoin, we believe the extreme solidity
and reliability of Berkeley DB is not worth the change. Most of them has migrated to
LevelDB. SpiderByte uses Berkeley DB to store the blockchain index, the wallet, peer
addresses and other information. LevelDB is reportedly:
1. Quite buggy
2. Project abandoned about 1 year ago
3. More prone to file corruption than Berkeley DB

2. Simple structures for speeding process: where necessary, and following the growth
of the network, simple improvements to keep the software going at the right pace,
like the drastically reduced bulk operation at boot time, optimizations around the
code and smooth network operation.

3. Maintaining backward compatibility: since the protocol is quite well defined and
stable, there’s no need to re-invent the wheel. Backward compatibility is of the
utmost importance, because no developer, no matter how good, is infallible. A small
bug could compromise the functionality and create a dangerous network split. We
will strive with all forces to guarantee no network splits.

4. Be ready to upgrade: by choosing strong, portable bases (Berkeley DB, QT
Framework), we are ready to go to the next step when used versions become
obsolete and is time to upgrade.

5. Keep the tools for repair: SpiderByte wallet is one of the few that still keeps the
wallet Check/Repair/ZAP tools. These tools are extremely helpful when problems
arise with the wallet (like a sudden power outage or system hanging, leading to
abrupt shutdowns).

For the future development, that will take SpiderByte software into years to come:

1. Dev base: keep a solid and stable development base (2-3 fixed programmers), with
occasional help coming from the community.

2. Strong support: first hand communication as much as possible between developer
and end user, to overcome most difficulties and debug most situations, giving the
best experience possible (never let the user feel abandoned !)

3. Always looking for new technologies: “there are always people out there who
make the wheel rounder than you”, and when they do, we will be ready to take
advantage of that, with final user experience always as top priority.

12. Files structure
The data folder for the SpiderByte folder varies from one operating system to another, but
the data structure herein is the same, here below is an example of a data folder’s content
(Linux OS):

• ./database: contains the log files for the transactional Berkeley DB
• ./themes: may or may not be present, depending on your OS (may be elsewhere) and

contain the color/font themes of your wallet software.
• bindex0001.dat: this is the boot index file. Not critical. If corrupted, simply delete

this file and restart the wallet. The wallet will recognize that the file is missing and
it will re-index the blockchain.

• blk0001.dat: the blockchain file. Important but not critical, can be rebuild by a
resync if corrupted or lost.

• blkindex.dat: the blockchain Berkeley DB index file. Goes in pair with the previous
one.

• db.log: the DB error/info log file
• debug.log: the wallet DB error/info log file. May be useful to developers when

encountering issues.
• SpiderByte.conf: may be present or not, depending on your installation. Normally is

not necessary, unless you are an advanced user.
• peers.dat: contains the addresses of known peers. If the file is corrupted or missing,

it will just be rebuilt at the next boot.

• wallet.dat → ← : this is the most important file of them all. It contains all
your keys and public keys for receiving and mapping your coins. If you loose this file,
you will loose all your coins. Backup this file frequently. More advanced users can
also make a paper-wallet using the command line in the console
(Help/Debug/Console).

X. MASTERNODES
Masternodes are used in special two-tier type currency, in which the layer of who-do-what
is subdivided into two, and essentially the govern the background protocol of the network.
For example, DASH is a two-tier network using Masternodes:

“Masternodes
Unlike Bitcoin's single-tier network of miners, Dash utilizes a two-tier network of
masternodes and miners.

As in Bitcoin, Dash miners secure the network by providing proof of work. The second tier
of the Dash network consists of masternodes, which perform PrivateSend, InstantSend, and
governance functions. In future releases aimed at improving ease-of-use, the masternode
network will store encrypted data relating to user and merchant accounts (DashDrive), and
will enable third party clients to interact with the Dash network via a decentralised API
(DAPI).” (ref https://en.wikipedia.org/wiki/Dash_(cryptocurrency)#Masternodes)

SpiderByte is a single-tier network, and does not plan in the foreseeable future to become
a two tier network, thus adding Masternodes. The well balanced combined capacity of PoS
and PoW will suffice to make the network stable in the long run.

https://en.wikipedia.org/wiki/Dash_(cryptocurrency)#Masternodes

